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Non-Invasive Analysis of Cell Cycle Dynamics in
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Abstract Raman micro-spectroscopy is a laser-based technique which enables rapid and non-invasive
biochemical analysis of cells and tissues without the need for labels, markers or stains. Previous characterization of the
mammalian cell cycle using Raman micro-spectroscopy involved the analysis of suspensions of viable cells and individual
fixed and/or dried cells. Cell suspensions do not provide cell-specific information, and fixing/drying can introduce
artefacts which distort Raman spectra, potentially obscuring both qualitative and quantitative analytical results. In this
article, we present Raman spectral characterization of biochemical changes related to cell cycle dynamics within single
living cells in vitro. Raman spectra of human osteosarcoma cells synchronized in G0/G1, S, and G2/M phases of the cell
cycle were obtained and multivariate statistics applied to analyze the changes in cell spectra as a function of cell cycle
phase. Principal components analysis identified spectral differences between cells in different phases, indicating a
decrease in relative cellular lipid contribution to Raman spectral signatures from G0/G1 to G2/M, with a concurrent
relative increase in signal from nucleic acids and proteins. Supervised linear discriminant analysis of spectra was
used to classify cells according to cell cycle phase, and exhibited 97% discrimination between G0/G1-phase cells and
G2/M-phase cells. The non-invasive analysis of live cell cycle dynamics with Raman micro-spectroscopy demonstrates the
potential of this approach to monitoring biochemical cellular reactions and processes in live cells in the absence of
fixatives or labels. J. Cell. Biochem. 104: 1427–1438, 2008. � 2008 Wiley-Liss, Inc.
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Cell cycle dynamics are intimately involved
in all aspects of health and disease, and
have justly received significant interest in
biomedical research. Changes in cell cycle
mechanics induced by drug administration
in vitro are routinely investigated to aid in
pharmaceutical development, including identi-
fication of anti-cancer agents which disrupt cell

cycle machinery [Wang and El-Deiry, 2004].
Recently, scientists have explored cell cycle
changes induced by cell–biomaterial interac-
tions to develop biocompatible and bioactive
tissue engineering scaffolds which support
and enhance cell adhesion, proliferation, and
differentiation [Lopes et al., 1998; Xynos
et al., 2000a,b]. Current histological, cellular
and molecular techniques available to study
cell cycle biochemistry in culture are invasive,
requiring fixation and/or exogenous fluorescent
labeling (e.g., flow cytometry) [Wolthuis et al.,
1999]. Many research fields would benefit from
the development of new techniques which
permit non-invasive, in situ monitoring of living
cells.

Raman micro-spectroscopy is a laser-based
analytical technique which enables rapid and
non-invasive biochemical analysis of cells
and tissues in the absence of fixatives or labels.
The Raman effect is based on the inelastic
scattering of light, whereby energy differences
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between incident and scattered photons cor-
respond to the specific vibrational energies
of chemical bonds of the scattering molecules
[Raman and Krishnan, 1928]. The Raman
spectrum of a cell represents a unique bio-
chemical fingerprint, providing information
about all cellular biopolymers, and can be used
to characterize cell phenotype [Omberg et al.,
2002; Notingher et al., 2004b; Crow et al., 2005;
Chan et al., 2006], monitor cell death [Verrier
et al., 2004], differentiation [Notingher et al.,
2004a; Jell et al., 2007], and cellular response to
pharmacological treatments [Krafft et al., 2006;
Owen et al., 2006].

The ability of Raman micro-spectroscopy to
resolve molecular detail on the micron scale
makes it a suitable method to elucidate the
intricate dynamics of the cell cycle. The eukary-
otic cell cycle is a highly regulated, complex
process divided into a number of phases: G0

(resting state), G1 (gap 1), S (DNA synthesis),
G2 (gap 2), and M (mitosis). Cells can be
synchronized in G0 by serum starvation, and
chemical cell cycle inhibitors can be used to
target other phases. Chemical inhibitors may be
administered to adherent cells in culture, and
their effects are reversible upon washout and re-
incubation with serum-supplemented medium.
Analysis of DNA and cyclins by flow cytometry
is the current gold-standard for assessing cell
cycle synchronization. However, unlike Raman
micro-spectroscopy, flow cytometry requires
suspensions of (normally fixed) cells stained with
fluorescent tags, and cannot be applied in situ on
adherent cells growing in culture. Both infrared
(IR) absorption spectroscopy and Raman micro-
spectroscopy have been used to analyze pre-
synchronized viable cell suspensions [Mourant
et al., 2003b; Short et al., 2005] and single fixed
and dried cells [Boydston-White et al., 1999;
Matthäus et al., 2006] to characterize spectral
patterns related to the cell division cycle.
Strong water absorption can interfere with IR
spectra, requiring potentially artefact-inducing
[Mourant et al., 2003a] fixation and dehydra-
tion of samples [Boydston-White et al., 2005], or
omission of distorted spectral regions [Mourant
et al., 2003b]. The weak inelastic scatter-
ing of aqueous media makes Raman micro-
spectroscopy amenable and uniquely suited to
cell cycle analysis of living cells in situ. However,
to date this advantage has not been exploited.

Here, we present Raman spectral charac-
terization of biochemical changes related to cell

cycle dynamics within single living cells. We
collected Raman spectra of human osteo-
sarcoma (MG63 cell line) cells synchronized
in G0/G1, S and G2/M phases of the cell cycle
and applied multivariate statistics to ana-
lyze the changes in cell spectra as a function
of cell cycle phase. Specifically, we apply prin-
cipal components analysis (PCA) to examine cell
cycle dependent variations in Raman spectral
signatures, and linear discriminant analysis
(LDA) as a supervised classification algorithm
to differentiate between cells synchronized in
different cell cycle phases. The results pre-
sented here illustrate the potential of Raman
micro-spectroscopy as a sensitive and powerful
tool for non-invasive biochemical analysis of live
cellular systems.

MATERIALS AND METHODS

Cell Culture

MG63 (human osteosarcoma cell line) cells
(ECACC, UK) were grown to 70% confluence
before seeding onto sterilized magnesium fluo-
ride (MgF2) coverslips (Global Optics, UK) at a
density of 1� 104 cells/cm2 for 24 h. Cells were
cultured in Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 10% fetal bovine
serum (FBS), 1% antibiotic/antimycotic, 1% L-
glutamine (all from Invitrogen, UK) in a 5% CO2

incubator at 378C. MgF2 was selected because
of its low Raman signal and low solubility,
and has been shown to have no adverse effects
on cell attachment, morphology, and viability
[Notingher et al., 2004b].

Cell Synchronization

Cell cycle inhibitors were used to synchronize
MG63 cells in G0/G1, S, and G2/M phases of the
cell cycle as described previously [Carbonaro-
Hall et al., 1993]. At 70% confluence, cells were
synchronized in G0/G1 by serum starvation
(0.1% FBS serum) for 48 h. For S-phase
block, G0/G1-synchronized cells were incubated
with 10% FBS supplemented DMEM contain-
ing 2 mg/ml aphidicolin (Sigma-Aldrich, UK), an
inhibitor of DNA-polymerase [Pedrali-Noy
et al., 1980], for 24 h to synchronize cells at the
G1/S transition point, after which the aphidico-
lin block was washed off and the cells incubated
for 5 h with 10% FBS medium to stimulate
synchronized entry into S phase of the cell
cycle. G2/M block was accomplished by treat-
ing G0/G1-synchronized cells with 10% FBS
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medium containing 0.2 mg/ml nocodazole
(Sigma), an agent which disrupts tubulin
polymerization, for 27 h [Jordan et al., 1992].
Flow cytometry was used to assess cell cycle
synchronization. Optimal G2/M synchroniza-
tion efficiency was achieved using a 27 h
incubation period with nocodazole, rather than
a 30 h time point used in previous studies [Yang
et al., 1999].

Flow Cytometry

Flow cytometric analysis of DNA content was
used to assess cell cycle synchronization as
described previously [Krishan, 1975]. Briefly,
cell suspensions (1� 106 cells) were washed
three times in phosphate-buffered saline (PBS,
Invitrogen, UK), fixed in 70% ice-cold ethanol
whilst vortexing, and stored at 48C. The cells
were centrifuged for 5 min at 400g and the pellet
re-suspended in 0.5 ml PBS, and 300 ml pro-
pidium iodide (PI, Sigma, 50 mg/ml). To ensure a
fluorescence signal proportional to DNA con-
tent, 50 ml RNase-A (Sigma, 100 mg/ml) was
added to remove cellular RNA. The samples
were then covered and incubated for 30 min at
room temperature. DNA content histograms
were collected using a FACSCalibur flow cyto-
meter (Becton Dickenson, Franklin Lakes,
NJ), which was calibrated using the DNA
histogram–profile of asynchronous control
cells. Cell cycle markers were added to DNA
content histograms using the CellQuest Pro
software to determine the percentage of
cells in G0/G1, S, and G2/M phases of the cell
cycle. Flow cytometry measurements were
performed on at least three independently
synchronized cell populations for each treat-
ment group.

Raman Micro-Spectroscopy

Raman spectra were measured with a
Renishaw InVia spectrometer connected to a
Leica microscope, as described previously
[Notingher et al., 2004b]. Before Raman analysis,
the cell culture medium was removed and the
cells rinsed twice with PBS. Spectra of live
cells were measured in PBS maintained at
378C. A high power 785 nm diode line focus laser
(�120 mW power before objective) was used for
excitation.This laserwavelength andpower have
previously been reported to have no effect on
cell viability or phenotype [Notingher et al.,
2002]. Other researchers have used similar laser
wavelength and power to examine live cells in

suspension [Short et al., 2005]. The laser was
focused on individual cells by a 63� (NA¼ 0.9)
long working distance (2 mm) water immersion
objective. Under these conditions, the laser
illuminates an elliptical region at the focal
plane, with approximately 10 mm� 20 mm lateral
spatial resolution. The spectrum of each cell was
calculated as the average of four or five spectra
(depending on cell size and morphology) measur-
ed at different lateral positions to ensure a
complete mapping of the cell. Each point spec-
trum was integrated for 40 s, giving a total
spectral integration time of 160–200 s per cell.

Fifteen cells per cell cycle group were ana-
lyzed with Raman micro-spectroscopy. To re-
duce the influence of system variability, and to
limit the potential of artificial data clustering
[Notingher et al., 2004b], cell spectra were
measured on three separate days, with five cells
per treatment group analyzed per day. Spectra
were collected from a glass reference sample
each day to correct for instrument response
[Notingher et al., 2004b]. The spectrum of PBS
buffer was measured each day, with signal
integration time of 300 s.

Reference cellular components, phosphatidyl
choline (lipid), DNA (nucleic acid), and actin
(protein) were purchased from Sigma Ltd. (UK)
and used without further preparation. The
spectra of the dry samples were measured
for comparison with the principal component
loading vectors generated by PCA.

Data Analysis

Raman spectra were pre-processed and ana-
lyzed in Matlab (The MathWorks, Natick, MA)
using in-house software previously developed
by Notingher et al. [2004b]. New programs were
compiled for fluorescence background subtrac-
tion, standardization and alignment of the
wavenumber axis, and LDA. The PBS contri-
bution to the signal was subtracted using the
projection method described by Maquelin et al.
[2000], and the background was corrected using
the Modpoly algorithm described by Lieber and
Mahadevan-Jansen (5th order polynomial,
1,000 iterations) [Lieber and Mahadevan-
Jansen, 2003]. The wavenumber axis of each
spectrum was then standardized and aligned to
the sharp phenylalanine peak at 1,003 cm�1,
and the mean spectrum for each cell was
calculated from the aligned group of 4–5 spectra
per cell. Average spectra for each treatment
group were calculated from the 15 mean cell
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spectra per group, which were individually
smoothed using a Savitsky-Golay filter
(5 points, 2nd order polynomial), and then
normalized using the standard normal variate
(SNV) transformation [Wolthuis et al., 1999].
For PCA, spectral differentiation of the
aligned, PBS-corrected spectra was used to
remove the background, instead of the Lieber
and Mahadevan-Jansen method. Second
derivative spectra were computed using a
Savitsky-Golay filter (21 points, 2nd order
polynomial) and then normalized using the
SNV transformation.

PCA identifies combinations of variables that
account for major sources of variance within a
data set [Wold et al., 1987]. PCA is often used to
compress high-dimensional data by expressing
the data in terms of a small number of principal
components (PCs). The PCs contain no over-
lapping information, with the greatest variance
captured by PC1, the second greatest variance
by PC2, and so on. Data compression is achiev-
ed by retaining only the PCs that describe
the most significant variance, while ignoring
higher-order PCs which mostly account for
random noise. The mean-centered, second
derivative Raman spectra were analyzed using
a singular value decomposition PCA algorithm.

PCA is a mathematical transformation which
does not incorporate class membership of data.
LDA is a supervised classification algorithm
for discrimination of sample groups. The algo-
rithm computes linear discriminant functions,
which are directions in the spectral space that
maximize the ratio of between-class variance to

within-class variance according to Fisher’s
criterion [Hair, 1998]. Projecting the data along
these functions produces maximal group
separation. The significant PCs were used to
generate the LDA model, and the cell synchro-
nization results obtained by flow cytometry
were used to calculate the prior probabilities
of each cell cycle group. Classification accuracy
was assessed using leave-one-out cross-
validation, whereby the class of a spectrum is
predicted using an LDA model built from the
full data set excluding the spectrum in question.
This method is repeated, with each spectrum
left out in turn, so that each spectrum is
predicted once.

RESULTS

Flow Cytometry

We conducted flow cytometry experiments to
assess cell cycle synchronization induced by
serum starvation and cell cycle inhibitors
aphidicolin and nocodazole. DNA content histo-
grams which describe the percentage distri-
bution of cells in G0/G1, S, and G2/M phases of
the cell cycle are included in Figure 1. Serum
starvation rendered cells quiescent in G0/G1

with 94% accuracy, and mitotic block with
nocodazole synchronized 77% of cells in G2/M.
Synchronization at the G1/S-transition point
with aphidicolin synchronized 94% of cells in
G0/G1 (n¼ 5, data not shown), and subsequent
washout with re-stimulated growth success-
fully synchronized 68% of cells in S phase. Given
the difficulty associated with S-phase synchro-

Fig. 1. Flow cytometry analysis of MG63 cell synchronization. Representative DNA content histograms are
shown for (A) cells blocked in G0/G1 by serum starvation (n¼4), (B) cells synchronized in S phase with
aphidicolin, washout and re-stimulated growth (n¼ 3), and (C) cells arrested in G2/M with nocodazole
(n¼3). Cell cycle markers used to estimate the percentage distribution of cells in each phase are also
included.
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nization, these results compare favorably with
MG63 synchronization results reported in the
literature [Carbonaro-Hall et al., 1993; Kawa-
bata et al., 2000], and are higher than contact-
inhibition synchronization achieved in previous
Raman cell cycle studies [Short et al., 2005]. The
distribution of asynchronous cells was approxi-
mately 60% G0/G1, 15% S phase, and 25% G2/M
(n¼ 3).

Cell Morphology

MG63 cell morphology varied at different
points of the cell cycle. G0/G1 cells were
elongated, whereas S and G2/M cells showed a
gradual progression to a more rounded mor-
phology. Cells round up during mitosis as the
cytoskeleton rearranges, but G2/M arrest by
nocodazole, an anti-microtubule agent which
disrupts the cellular cytoskeleton, may contri-
bute to the rounding of G2/M cells [Jordan et al.,
1992]. Pictures representative of cell morpho-
logy for each cell cycle group are included in the
insets of Figure 2.

Raman Cell Spectra

The average normalized Raman spectra of
MG63 cells synchronized in G0/G1, S, and G2/M
phases of the cell cycle (after pre-processing)
are shown in Figure 2. The spectra of MG63
cells reported here are similar to previously
published Raman spectra of MG63 cells
[Notingher et al., 2004b], and consist of peaks
corresponding to molecular vibrations of all
cellular components (i.e., nucleic acids, proteins,
lipids, and carbohydrates). Detailed tables of
peak assignments can be found elsewhere
[Notingher et al., 2004a].

Unsupervised PCA

The scree plot of singular values generated by
the PCA indicated the first six PCs accounted for
the main sources of variance, a conclusion
supported by the low signal-to-noise ratio
(SNR) observed in the higher PCs.

PCA was used to compress the high-
dimensional spectral data to scores on the first

Fig. 2. Average processed Raman spectra of MG63 cells (middle black lines represent averages, shaded
areas� standard deviation): spectra are labeled as G0/G1, S phase, and G2/M, based on cell cycle treatment.
The spectra have been shifted vertically for clarity. Representative pictures of synchronized cells are
included in the insets (scale bar¼ 10 mm).
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six PCs. The PCs contain spectral features
corresponding to the main molecular species
responsible for the statistical variation between
spectra. Principal component 1 (PC1) was
dominated by lipid spectral features, with peaks
at 717, 877, 980, 1,265, 1,301, 1,440, 1,660 cm�1,
all of which describe molecular vibrations
in lipids. These features are highlighted in
Figure 3, where PC1 is compared to the second
derivative Raman spectrum of phosphatidyl
choline (P-Ch), a model lipid. A statistically
significant correlation (RPC1¼ 0.85) between
PC1 and P-Ch was obtained by calculating

the correlation coefficient (R), which provides
a statistical measure of the similarity between
spectra (identical spectral profiles exhibit a
correlation coefficient of unity, i.e., R¼ 1). PC3
displayed prominent features found in spectra
of nucleic acids (e.g., DNA, with peaks at 729,
786, 1,095, 1,260, 1,375, 1,490, and 1,578 cm�1)
and cellular proteins (e.g., actin, with peaks at
620, 854, 1,003, 1,033, and 1,125 cm�1). These
marker peaks are indicated in Figure 4, where
PC3 is compared to the sum of the second
derivative Raman spectra of DNA and actin (to
model nucleic acid and protein, respectively).
Statistical comparison of these two spectral
vectors yielded a correlation of RPC3¼ 0.62. PC2
and PC4-PC6 had lower SNR and contained
little information. Furthermore, the scores on
PC2 revealed clustering according to the day
of spectral acquisition: spectra measured on
the same day tended to cluster together, with
sub-clusters of segregated cell cycle groups.
Despite every effort taken to minimize spectral
variation, day-to-day spectral variation can
occur due to instrumental factors or variation
in sample preparation. Previous Raman cell
biology studies have also reported significant
day-to-day spectral variation [Maquelin et al.,
2000; Short et al., 2005]. The segregation of the
effects of day-to-day spectral variation into a
single PC makes it easier to filter out these
influences on the data, which otherwise might
affect data interpretation. It also justifies our
approach to collect spectra of cells from all
phases on each experimental day in order
to compensate for day-to-day variation, and
thereby prevent artefactual clustering of cell
spectra (i.e., clustering of spectra based on noise
or daily system variation) [Notingher et al.,
2004b].

In generating PCs, the PCA algorithm
assigns score values on each PC to each
spectrum, where a score value represents the
contribution of a PC to a spectrum. PC score
plots can be used to identify clustering of data
within the PC model. Clustering of cell cycle
groups was observed by plotting the scores
on PC1 versus scores on PC3 (Fig. 5). G0/G1

and G2/M cells were separated with only a few
G2/M-blocked cells grouping near the G0/G1 cell
cluster (Fig. 5A). Plotting the scores of S phase
synchronized cells (Fig. 5B) revealed that they
lie in a broad band between the G0/G1 and G2/M
cell clusters, with much larger variance than
the other cell groups.

Fig. 4. Comparison of PC3 with the vector sum of the second
derivative spectra of DNA and actin. Common peaks are
indicated, and the spectra have been shifted vertically for clarity.

Fig. 3. Comparison of PC1 with the second derivative spectrum
of phosphatidyl choline (P-Ch). Common peaks are indicated,
and the spectra have been shifted vertically for clarity.
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Linear Discriminant Analysis

We generated a supervised LDA classification
model using the significant PC scores in order to
differentiate between cells synchronized in
different cell cycle phases. The scores on PC2,
which described day-to-day spectral variation,
were not included in the LDA model. The LDA
prior probabilities of each cell cycle group were
calculated using the cell synchronization data
obtained using flow cytometry. In a standard
LDA, the prior probability of class k, p (k), is
found simply by calculating its frequency
within the training data, that is, 15/45¼ 1/3
for our data. However, this assumes 100%
synchronization efficiency of the chemical treat-
ments, which is not the case. Instead, we
incorporate the cell cycle distribution data from

Figure 1 to calculate the prior probability for the
G0/G1 phase class as:

pðG0=G1Þ ¼ ð15=45ÞðG0=G1%Þ
þ ð15=45ÞðS%Þ þ ð15=45ÞðG2=M%Þ

¼ ð15=45Þð94:1%Þ þ ð15=45Þð27:9%Þ
þ ð15=45Þð6:2%Þ ¼ 0:4273

This expression describes the probability that
an arbitrary spectrum belongs to a G0/G1-phase
cell, by incorporating the probability of ana-
lyzing a G0/G1 phase cell within the G0/
G1-synchronized culture (94.1%), and within
the S phase-synchronized (27.9%) and G2/
M-synchronized (6.2%) cultures. Similarly, the
prior probabilities for S and G2/M phase classes
were calculated as:

pðSÞ ¼ ð15=45Þð2:0%Þ þ ð15=45Þð68:1%Þ
þ ð15=45Þð16:6%Þ ¼ 0:2890

pðG2=MÞ ¼ ð15=45Þð3:9%Þ þ ð15=45Þð4:0%Þ
þ ð15=45Þð77:2%Þ ¼ 0:2837

Two linear discriminant functions (LD1
and LD2) were generated from the scores on
PC1–PC6 (exclusive of PC2). These scores were
then projected onto LD1 and LD2 to produce an
LDA score plot (Fig. 6).

The results of the LDA model cross-validation
are reported in Table I. The ability of the
LDA model to predict the phase of cell cycle
synchronization based on cellular Raman
spectra was evaluated by calculating the sensi-
tivity and specificity for each cell cycle group.
LDA model classification accuracy was highest
for cells synchronized in G0/G1 (93%), with

Fig. 5. PC1–PC3 score plot. A: Scores of G0/G1 and G2/M phase
cell populations. B: Scores of G0/G1, S, and G2/M phase cell
populations.

Fig. 6. LD1–LD2 score plot: LDA scores of G0/G1, S, and G2/M
phase cell populations.
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only one cell misclassified as an S phase cell.
Classification accuracy was lower for cells
synchronized in S phase (67%), with five cells
misclassified. The predictive power was lowest
for G2/M phase cells (60%), with five cells
misclassified as S phase cells and one as a G0/
G1 phase cell. Overall, 73% of the cells were
correctly classified, with most errors occurring
due to misclassification of cells synchronized
in G2/M phase as S phase cells. With only
one misclassification between G0/G1 and
G2/M cell populations, the PCA–LDA model
exhibits excellent 97% spectral discrimination
between G0/G1 and G2/M phase cells. In addi-
tion, the model demonstrated 89% spectral
discrimination between quiescent G0/G1 phase
cells and actively cycling cells in S or G2/M
phases.

DISCUSSION

To study changes in Raman spectra of live
MG63 cells as a function of cell cycle phase, we
collected spectra of cells from MG63 cultures
synchronized in G0/G1, S, and G2/M phases
of the cell cycle. The flow cytometry results
(Fig. 1) revealed excellent levels of cell cycle
synchronization, indicating that the synchroniz-
ed populations analyzed with Raman micro-
spectroscopy contained high-proportions of cells
within the correct target phase. Once cell
cultures were synchronized, the use of a line
focus laser with a large spot-size (i.e., not
diffraction-limited) facilitated rapid collection
of spectra from single living cells within a matter
of minutes (typically 5–10 min per cell to scan
the entire cell volume). This is in contrast to
hyperspectral imaging [Matthäus et al., 2006],
where the collection of thousands ofpoint spectra
per cell requires several hours, making the use

of fixatives to preserve cellular conditions a
pre-requisite.

The Raman spectra of synchronized MG63
cells reported here indicate minor spectral
variations between cell cycle groups. The sim-
ilarity between spectra of cells in G0/G1, S, and
G2/M is expected, given that the cells were from
the same cell line and differed only in cell cycle
phase, and also because we monitored spectral
changes on the level of the entire cell, rather
than subjectively targeting specific sub-cellular
regions (e.g., cell nuclei). The small standard
deviations within each cell cycle group suggest
cell populations with a high degree of homoge-
neity, in agreement with the flow cytometry
results.

We used principal components analysis
(PCA) to identify the spectral peaks which
account for the variance between spectra of
cells synchronized in different cell cycle
phases. PC1 (Fig. 3) and PC3 (Fig. 4) described
significant trends within the data, with PC1
describing changes in cellular lipid and PC3
changes in DNA and protein. The observation
of biochemical-specific spectral peaks in the
PCs was supported by statistically significant
correlation between the PCs and the spectra
of reference cellular components (PC1 and
P-Ch, RPC1¼ 0.85, and PC3 and DNAþ actin,
RPC3¼ 0.62). In general, PCs do not represent
pure biochemical components, but rather com-
binations of peaks from multiple components
[Crow et al., 2005]. This explains the presence of
extra peaks in the PCs and why the correlation
coefficients are less than one: the significant
correlation RPC1¼ 0.85 indicates that PC1
mostly describes lipid features, which account
for the highest variance within the dataset, but
also contains some additional information about
molecular vibrations of other cellular compo-
nents. PC3 captures the smaller variance due to
changes in nucleic acids and proteins
(RPC3¼ 0.62), as well as some additional bio-
chemical components. Discrepancies between
the PCs and reference spectra, and hence lower
correlation coefficients, may also be due in part
to the comparison of solid state spectra of the dry
reference components with the PCs derived
from solution phase spectra. The fact that more
changes in cellular lipids were detected than
in DNA and protein is not surprising, for
two reasons: cells contain much more lipid
than DNA, and our results represent spectral
changes on the level of the entire cell; and it is

TABLE I. Cell Cycle Classification
Accuracy of Three-Group LDA Model as

Assessed by Leave-One-Out Cross-Validation

Cell cycle block

Raman-predicted cell
cycle stage

G0/G1 S phase G2/M

G0/G1 14 1 0
S phase 3 10 2
G2/M 1 5 9

Sensitivity (%) 93 67 60
Specificity (%) 87 80 93
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likely that it is specific types of protein rather
than total protein content which changes as
cells advance through the cell cycle [Boydston-
White et al., 2006]. However, these findings
differ from an earlier study by Notingher et al.
[2003], where changes in the levels of DNA
accounted for the most significant differences
between the spectra of A549 adenocarcinoma
cells from a confluent monolayer and spectra
of rounded cells on top of the monolayer.
Those findings were interpreted as spectral
differences between cells resting in G0/G1 and
those actively dividing in S/G2/M phases of
the cell cycle. However, contact inhibition alone
generally yields low levels of synchronization,
and the degree of synchronization was not
assessed, nor was the cell cycle phase of
individual cells confirmed. These discrepancies
may therefore be due to analysis of cell clusters
and confluent cell layers rather than single
individual cells.

PCA also serves as an unsupervised cluster-
ing algorithm to examine grouping of data.
PCA assigns score values on each PC to each
spectrum, where a score value represents the
contribution of a PC to a spectrum. PC score
plots can be used to determine whether or not
spectra are related: clustering or grouping of
spectra within these plots indicates systematic
differences between the spectra [Boydston-
White et al., 2006]. The clustering of cell cycle
groups in the PC1–PC3 score plot (Fig. 5)
suggests that cluster heterogeneity increases
as synchronization efficiency decreases; the
increasing variance (i.e., cluster spread) in cell
cycle populations from G0/G1 to G2/M to S phase
reflects the lower efficiencies of G2/M and
S phase synchronization. The cluster positions
(G0/G1!S!G2/M) reveal a decrease in score
value on PC1 and an increase in score value on
PC3, which implies a decrease in cellular lipid
content and increases in cellular nucleic acid
and protein content as cells progress through
the cell cycle. A previous study in which
suspensions of viable, synchronized cells were
investigated with Raman micro-spectroscopy to
characterize spectral patterns related to the
cell division cycle also reported similar trends
[Short et al., 2005].

The clustering in the PC1–PC3 score plot
(Fig. 5) is strikingly similar to the cell cycle
dependent variations in Fourier transform
IR (FTIR) micro-spectra of single HeLa cells
recently reported by Boydston-White et al.

[2006]. In that study, good spectral discrimi-
nation between G0/G1, S, and G2/M phase
cells was achieved with PCA applied only to
the amide I region (1,598–1,702 cm�1) of cell
nucleus spectra. The PCA presented here
was not confined to a narrow spectral band,
and so discrimination is based on spectral
features from multiple biochemical components
over the entire spectral fingerprint range (600–
1,800 cm�1). The fact that this cell cycle
trend is preserved despite the use of different
mammalian cell lines (MG63 and HeLa),
vibrational spectroscopic techniques (Raman
micro-spectroscopy versus FTIR), and sample
preparation conditions (live cells versus
formalin-fixed and dried cells) illustrates the
potential of vibrational spectroscopy as a robust
and powerful tool for non-invasive cellular
biochemical analysis.

We used the significant PC scores from PCA to
generate a supervised LDA model to classify
cells according to cell cycle phase. The LD1–
LD2 plane (Fig. 6) represents the optimal
spectral subspace for group discrimination.
The LDA separated G0/G1 phase cells from
S and G2/M phase cells along the direction of
LD1, reducing the overlap between clusters
of G0/G1 and G2/M phase cell populations
observed in the PC1–PC3 score plot (Fig. 5A).
The LDA also decreased the spread of the
diffuse cluster of S-phase synchronized cells.
These results can be attributed to the fact
that LDA model discrimination is based on
score values on five PCs (PC1, PC3–PC6),
whereas the PC1–PC3 plane only represents
a small subset of the larger PC-space from
which the functions LD1 and LD2 were
computed.

The PCA–LDA model exhibited excellent 97%
spectral discrimination between G0/G1 and G2/M
phase cell populations. The high efficiency of
G0/G1 (94%) and G2/M (77%) synchronization
combined with the high sensitivity of Raman
spectral characterization enables reproducible
detection of cell cycle specific differences between
these extremesof the cell cycle.Furthermore, the
model also demonstrated a high-level of spectral
discrimination (89%) between G0/G1 phase cells
and actively cycling cells in either S or G2/M
phases. These results reflect the high synchro-
nization efficiency of serum starvation and hence
increased homogeneity of the G0/G1 cell popula-
tion over the S and G2/M phase groups. This is
also evident when all three cell cycle groups are
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considered separately: classification accuracy
for G0/G1 group (93%) is much higher than that
observed for either S-phase (67%) or G2/M (60%)
cells. A decrease in synchronization efficiency
leads to a loss in predictive power, due to
increased cluster overlap and higher levels
of data label uncertainty. While the PCA
results indicate spectra of S-phase cells display
features intermediate to those of G0/G1 and
G2/M cell spectra, the LDA projection (Fig. 6)
appears to merge the S and G2/M phase clusters,
obscuring class distinction which leads to lower
prediction accuracy.

The LDA model classification accuracy
assessed using cross-validation (Table I) did
not decrease with decreasing synchronization
efficiency, that is, G0/G1>G2/M>S, as expect-
ed. We expected to observe this trend on
consideration that cluster heterogeneity in
the PC1–PC3 plane appeared to increase
with decreasing synchronization efficiency,
and given that the accuracy of classification
algorithms generally decreases as cluster
heterogeneity increases. However, the LDA
model prior probabilities explain the observed
trend: although the synchronization efficiency
for G2/M phase arrest (77%) is higher than that
for S phase synchronization (68%), the prior
probability for the S phase class, p (S)¼ 0.2890,
is slightly greater than the prior probability for
the G2/M phase class, p (G2/M)¼ 0.2837. Thus
LDA classification accuracy decreased with
prior probability, rather than synchronization
efficiency. Also, it is possible that the population
of S phase cells within the five-dimensional
PC-space (PC1–PC6 exclusive of PC2) may in
fact be less heterogeneous than the G2/M phase
cell population, at least within our model.
In this case, examining the data in the two-
dimensional PC1–PC3 plane could produce a
distorted representation of the overall structure
of the data clusters. This interpretation is
supported by the LDA score plot (Fig. 6), where
the S phase cell population is actually less
heterogeneous than the G2/M phase cluster,
if we estimate cluster heterogeneity by the
average Euclidean distance of the data from
the cluster centroid in the LD1–LD2 plane.

One limitation with our LDA model is that
it requires unequivocal initial labeling of
spectra as G0/G1, S, or G2/M phase cell spectra.
Initial labeling does not incorporate class prior
probabilities, which account for imperfect cell
synchronization. As the exact cell cycle phase of

each individual cell was not determined, the
initial labeling is based on the cell synchroniza-
tion treatment administered, rather than on
true/verified cell cycle phase. Thus the super-
visor for the LDA model is imperfect, and has to
contend with some degree of ‘‘label noise.’’ In
this case, it is possible that some misclassified
G2/M phase cells were actually in S phase of
the cell cycle, and hence correctly classified, but
are considered misclassified because they were
initially labeled as G2/M phase cells. A similar
argument holds for misclassified G0/G1 and
S phase cells. Thus, the use of data which does
not permit unambiguous initial labeling is
likely to be a contributing factor to LDA model
misclassifications. We hope to improve cell
cycle-related spectral discrimination and clas-
sification in a larger sample of synchronized
cells, by developing fully supervised classifica-
tion models which can incorporate label noise
in the training data, or by removing initial
label noise by using fluorescence staining to
confirm the cell cycle status of individual cells
[Boydston-White et al., 2006].

In this study we have taken full advantage of
the high sensitivity and non-invasive sensing
capabilities of Raman micro-spectroscopy to
characterize biochemical dynamics related to
the cell division cycle within live, synchronized
cells. By analyzing live cells in situ, we have
avoided the possibility of artefacts arising
from fixation and desiccation. The high levels
of chemical synchronization enabled spectra
of individual cells from the target phases to be
collected and subsequently analyzed using
multivariate statistics. Small biochemical dif-
ferences between cells were detected and used
to classify cells based on their Raman spectral
signatures. This research demonstrates the
potential for Raman micro-spectroscopy to
non-invasively assess cell-cycle related changes
(e.g., retardation, impairment, apoptosis) in-
duced by pharmacological treatments of cells
grown in vitro, or by cell interactions (attach-
ment, differentiation, and proliferation) with
biomaterial substrates.
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